

DPP – 4 (Wave Optics)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/33

Video Solution on YouTube:-

https://youtu.be/uzJxr7xhyGY

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/46

- Q 1. Unpolarized light is incident on a plane glass surface. What should be the angle of incidence so that the reflected and refracted rays are perpendicular to each other? (Given refractive index of glass, n=1.5)
 - (a) $\sin^{-1} 1.5$
- (b) $tan^{-1} 1.5$
- (c) $\cos^{-1} 1.5$
- (d) $\sin^{-1}\frac{2}{3}$
- Q 2. Light waves can be polarized as they are
 - (a) Transverse
- (b) Of high frequency
- (c) Longitudinal
- (d) Reflected
- In the case of linearly polarized light, the magnitude of the electric field vector O 3.
 - (a) Is parallel to the direction of propagation
 - (b) Does not change with time
 - (c) Increases linearly with time
 - (d) Varies periodically with time
- The angle of polarization for any medium is 60°, what will be critical angle for this Q 4.

(a)
$$\sin^{-1} \sqrt{3}$$

(b)
$$\tan^{-1}\sqrt{3}$$

(c)
$$\cos^{-1}\sqrt{3}$$

(d)
$$\sin^{-1} \frac{1}{\sqrt{3}}$$

- Q 5. A polaroid is placed at 45° to an incoming light of intensity I_0 . Now the intensity of light passing through polaroid after polarization would be
- (b) $\frac{I_0}{2}$
- $(c)\frac{I_0}{4}$
- (d) zero
- Unpolarized light falls on two polarizing sheets placed one on top of the other. What O 6. must be the angle between the characteristic directions of the sheets if the intensity of the transmitted light is one third of intensity of the incident beam?
 - (a) $\tan^{-1}\left(\sqrt{\frac{3}{2}}\right)$

(b) $\sin^{-1}\left(\sqrt{\frac{3}{2}}\right)$ (d) $\sin^{-1}\left(\sqrt{\frac{1}{3}}\right)$

(c) $\cos^{-1} \left(\frac{1}{2} \right)^{\frac{2}{3}}$

- Q 7. Unpolarized light of intensity I₀ is incident on a polarizer and the emerging light strikes a second polarizing filter with its axis at 45° to that of the first. The intensity of the emerging beam

hysicsaholics

(a) $\frac{I_0}{2}$

(b) $\frac{I_0}{4}$

(c) I_0

(d) $\frac{I_0}{3}$

Q 8. A beam of the plane polarized light having flux 10^{-3} watt falls normally on a polarizer of a cross sectional area $3 \times 10^{-4} \ m^2$. The polarizer rotates with an angular frequency of 31.4 rad/s. The energy of the light passes through the polarizer per revolution will be

(a) 10^{-4} J

(b) 10^{-3} J

 $(c) 2 \times 10^{-4} J$

(d) $3 \times 10^{-4} \text{ J}$

Q 9. The angle between pass axis of polarizer and analyzer is 45°. The percentage of polarized light passing through analyzer is

(a) 100 %

(b) 50 %

(c) 25 %

(d) 75 %

Q 10. A ray of light is incident on the surface of a glass plate at an angle of incidence equal to Brewster's angle θ . If μ represents the refractive index of glass with respect to air, then the angle between reflected and refracted rays is

(a) $90^{\circ} + \theta$

(b) $\sin^{-1}(\mu\cos\theta)$

(c) 90°

(d) $90^{\circ} - \sin^{-1} \left(\sin \frac{\theta}{u} \right)$

- Q 11. Polarized glass is used in sun glasses because
 - (a) It reduces the light intensity to half an account of polarization
 - (b) It is fashionable
 - (c) It has good colour
 - (d) It is cheaper
- Q 12. A light has amplitude A (after polarizer) and angle between analyzer and polarizer is 60°. Light is reflected by analyzer has amplitude

(a) $A\sqrt{2}$

(b) $\frac{A}{\sqrt{2}}$

(c) $\frac{\sqrt{3}A}{2}$

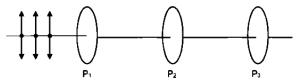
 $(d)\frac{A}{2}$

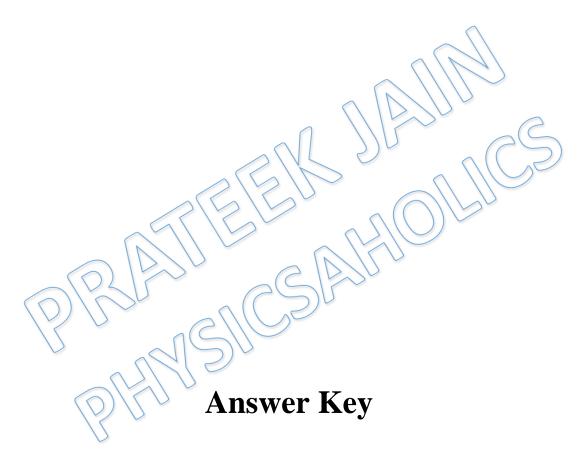
- Q 13. When a plane polarized light is passed through an analyzer and analyzer is rotated through 90°, the intensity of the emerging light
 - (a) Varies between maximum and zero
 - (b) Becomes zero
 - (c) Does not vary
 - (d) cant say anything
- Q 14. When the angle of incidence on a material is 60°, the reflected light is completely polarized. The velocity of the refracted ray inside the material is (in m/s)

(a) 3×10^8

(b) $\frac{3}{\sqrt{2}} \times 10^8$

(c) $\sqrt{3} \times 10^{8}$


(d) 0.5×10^8


Physicsaholics

Q 15. Unpolarized light beam of intensity I_0 is incident on polaroid P_1 . The three polaroids are arranged in such a way that transmission axis of P_1 and P_3 are perpendicular to each other. Angle between the transmission axis of P_2 and P_3 is 60° . The intensity of the beam coming out from P_3 will be

- (a) $\frac{I_0}{2}$
- (b) $\frac{3I_0}{8}$
- $\frac{3I_0}{32}$ (d) $\frac{3}{6}$

Q.1 b	Q.2 a	Q.3 d	Q.4 d	Q.5 b
Q.6 c	Q.7 c	Q.8 a	Q.9 b	Q.10 c
Q.11 a	Q.12 d	Q.13 a	Q.14 c	Q.15 c